Ученые создали оптический микроскоп, который способен преодолеть дифракционный предел для видимого света - фундаментальное ограничение, которое накладывает запрет на минимальный размер разрешаемых при помощи микроскопа объектов. Работа исследователей появилась в журнале Nature Communications, а коротко о ней пишет Wired.
Из-за дифракционного предела в микроскоп нельзя рассмотреть объекты, размер которых меньше половины длины волны используемого излучения. Для оптической микроскопии - то есть длин волн, различимых человеческим глазом, предельный размер объекта составляет около 200 нанометров. Примерно таков размер крупных вирусов и самых мелких бактерий. Для того чтобы изучать более миниатюрные объекты, ученые используют электронную и рентгеновскую микроскопию, а также новые методы, основанные на использовании метаматериалов (так называемые суперлинзы). Третий метод пока не вошел в повседневную практику, а первые два не позволяют исследовать живые объекты in situ - во время подготовки препарата они неизбежно погибают.
Для усиления "зоркости" оптического микроскопа авторы новой работы использовали так называемые исчезающие волны. Этим термином обозначают волны, испускаемые освещенным объектом, которые чрезвычайно быстро затухают с расстоянием. Чтобы получить большое количество таких волн, физики размещали на поверхности изучаемого объекта большое количество крошечных золотых гранул размером от 2 до 9 микрометров (микрометр - это одна миллионная часть метра).
Гранулы собирают свет, проходящий сквозь образец, а возникающие на их поверхности исчезающие волны фокусируются таким образом, чтобы они собирались при помощи стандартных линз, используемых в оптической микроскопии. Детали эксперимента уточняет BBC News.
Такая стратегия позволила ученым разглядеть объекты, размером до 50 нанометров. Так, исследователи получили четкие изображения желобков, остающихся после записи информации на дисках Blu-ray, а также отверстия в фольге диаметром около 50 нанометров.
Коллеги исследователей отнеслись к их работе с большим энтузиазмом, однако отметили, что пока ее нельзя назвать завершенной. Так, специалисты отмечают, что авторы не продемонстрировали возможности своего микроскопа для изучения живых систем - например, вирусов или бактерий. Эти объекты постоянно движутся, поэтому к задаче получить собственно изображение добавляется необходимость сфокусироваться.
В последнее время появилось сразу несколько работ, авторам которых удалось существенно улучшить эффективность существующих технологий микроскопии. Например, ученые смогли сфотографировать водородные связи и различить отдельные атомы. Подробнее об этих работах можно прочитать здесь.
По материалам lenta.ru
Другие новости по теме
Богалий-Титовец уговорила Зайцеву пропустить ее на финише
Радулов признан лучшим форвардом месяца в КХЛ
Давид Вилья прилетит на матч на частном самолете
Тимофей Мозгов разыграл тренера
Тимощук передумал уходить из "Баварии"
Организаторы чемпионата мира по биатлону отказались переносить эстафету
Тихонов выбрал игровой номер в "Спартаке"
Гуллит опробовал новую тактику "Терека"
"Челси" отложил передачу чемпионских полномочий "Манчестер Юнайтед"
Тренеры "Анжи" и "Зенита" подрались в перерыве кубкового матча
КХЛ: Московское "Динамо" сумело продлить серию с рижскими одноклубниками
"Зенит" вышел в четвертьфинал Кубка России по футболу
Тренеры российских биатлонистов назвали состав на первую гонку ЧМ-2011
Чемпион мира по боксу решил отказаться от титула
Тренеру баскетбольного ЦСКА подарили ремень
Фергюсон обвинил арбитра в поражении от "Челси"
Смотрите также: В мире, Бизнес, Общество, Искусство, Авто, Hi-Tech, Здоровье, Путешествия, Вокруг света, USA, Россия | |
|